skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ratschbacher, Barbara C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The chemical and isotopic characteristics of a solidified pluton represent the integration of magmatic and sub-solidus processes operating across a range of spatial and temporal scales during pluton construction, crystallization, and cooling. Disentangling these processes and understanding where chemical and isotopic signatures were acquired requires the combination of multiple tools tracing processes at different time and length scales. We combine whole-rock oxygen and Sr-Nd isotopes, zircon oxygen isotopes and trace elements, and mineral compositions with published high-precision U-Pb zircon geochronology to evaluate differentiation within the bimodal Guadalupe Igneous Complex, Sierra Nevada, California (USA). The complex was constructed in ~300 k.y. between 149 and 150 Ma. Felsic magmas crystallized as centimeter- to meter-sized segregations in gabbros in the lower part of the complex and as granites and granophyres structurally above the gabbros. A central mingling zone separates the mafic and felsic units. Pluton-wide δ18O(whole-rock), δ18O(zircon), and Sr-Nd isotopic ranges are too large to be explained by in situ, closed-system differentiation, instead requiring open-system behavior at all scales. Low δ18O(whole-rock) and δ18O(zircon) values indicate assimilation of hydrothermally altered marine host rocks during ascent and/or emplacement. In situ differentiation processes operated on a smaller scale (meters to tens of meters) for at least ~200 k.y. via (1) percolation and segregation of chemically and isotopically diverse silicic interstitial melt from a heterogeneous gabbro mush; (2) crystal accumulation; and (3) sub-solidus, high-temperature, hydrothermal alteration at the shallow roof of the complex to modify the chemical and isotopic characteristics. Whole-rock and mineral chemistry in combination with geochronology allows deciphering open-system differentiation processes at the outcrop to pluton scale from magmatic to sub-solidus temperatures over time scales of hundreds of thousands to millions of years. 
    more » « less
  2. Abstract The Fe3+/FeT ratios (Fe3+/[Fe2++Fe3+]) in minerals can be used to understand their crystallization and post-crystallization conditions. However, as natural minerals are often zoned and contain inclusions, bulk techniques, e.g., wet chemistry, may not provide accurate Fe3+/FeT values for a single phase of interest. We determined Fe3+/FeT ratios of amphiboles in different crystallographic orientations by single-crystal synchrotron Mössbauer spectroscopy (SMS) in energy and time domain modes from four volcanic localities (Long Valley Caldera, Mount St. Helens, Lassen Volcanic Center, U.S.A., and Mt. Pinatubo, Philippines). The high spatial resolution (as low as 12 × 12 μm spot size) and standard-free nature of SMS allow the detection of intra-grain compositional heterogeneities in Fe3+/FeT with relatively low uncertainties. We combine SMS with major element compositions, water contents, and hydrogen isotope compositions to document the Fe3+/FeT ratios as a function of mineral composition and post-crystallization dehydrogenation. Spectra were fitted with up to five distinct sites: ferrous iron on M(1), M(2), M(3), and ferric iron on M(2) and M(3), consistent with X-ray diffraction studies on single crystals of amphibole. The Fe3+/FeT ratios range from 0.14 ± 0.03 (Long Valley Caldera), 0.51 to 0.63 ± 0.02 (representing intra-grain heterogeneities, Mount St. Helens) to 0.86 ± 0.03 (Lassen Volcanic Center). The latter grain experienced post-crystallization dehydrogenation, shown by its low water content (0.6 ± 0.05 wt%) and its elevated hydrogen isotope composition (δD = +25 ± 3‰ relative to SMOW). The Fe3+/FeT ratios of 0.62 ± 0.01 and 0.20 ± 0.01 of two Mt. Pinatubo grains correlate with high-Al2O3 cores and low-Al2O3 rims and smaller phenocrysts in the sample, respectively. This study shows that SMS is capable of distinguishing two different domains with dissimilar Fe3+/FeT values formed under different crystallization conditions, demonstrating that SMS in combination with major element, water, and hydrogen isotope compositions allows the interpretation of amphibole Fe3+/FeT ratios in the context of crystallization and post-crystallization processes. 
    more » « less